[课时作业]
[A组 基础巩固]
1.设数列{an}中,a1=2,an+1=an+3,则数列{an}的通项公式为( )
A.an=3n B.an=3n+1
C.an=3n-1 D.an=3n-1
答案:C
2.数列{an}中,若a1=1,an+1=2an+3(n≥1),则该数列的通项an=________.( )
A.2n+1-3 B.2n-3
C.2n+3 D.2n-1-3
解析:an+1+3=2(an+3),∴此数列是以a1+3为首项,2为公比的等比数列,an+3=(1+3)×2n-1,即an=2n+1-3.
答案:A
3.设数列{an}满足a1+2a2+22a3+...+2n-1an=(n∈N*),则通项公式是( )
A.an= B.an=
C.an= D.an=
解析:设|2n-1·an|的前n项和为Tn,∵数列{an}满足a1+2a2+22a3+...+2n-1an=(n∈N*),∴Tn=,∴2n-1an=Tn-Tn-1=-=,
∴an==,经验证,n=1时也成立,
故an=.故选C.
答案:C
4.已知数列{an}满足a1=1,且an=an-1+n(n≥2,且n∈N*),则数列{an}的通项公式为( )
A.an= B.an=
C.an=n+2 D.an=(n+2)3n
解析:an=an-1+n(n≥2,且n∈N*)⇔=+1,