,
可得:当0≤x≤1时,f(x)=1-x2,有最大值f(0)=1,最小值f(1)=0,
当1<x<2时,f(x)=f(2-x),函数f(x)的图象关于直线x=1对称,则此时有0<f(x)<1,
又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;
则在x∈[6,8)上,f(x)=23•f(x-6),则有0≤f(x)≤4,
则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,
则函数f(x)在区间[6,8]上的最大值为8,最小值为0;
对于函数,有 ,
得在(0,1)上,g′(x)<0,函数g(x)为减函数,
在(1,+∞)上,g′(x)>0,函数g(x)为增函数,
则函数g(x)在(0,+∞)上,由最小值
若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)-f(x1)≤0成立,
必有g(x)min≤f(x)max,即 解可得 ,即m的取值范围为
二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.
15.(本小题满分14分)
在如图所示的ut..................演XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX平面直角坐标系中,已知点XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX和点,,且,其中为坐标原点.
(Ⅰ)若,设点为线段上的动点,求的最小值;