A. B. C. D.
【答案】C
【解析】
【分析】
根据平行四边形的图像特点得到=λ+2μ,又因为=(+),根据平面向量基本定理得到对应系数相等得到结果.
【详解】∵=2,=λ+μ,∴=λ+2μ.∵E为线段AO的中点,∴=(+),根据平面向量基本定理得到对应系数相等∴λ=,2μ=,解得μ=,∴λ-μ=.
故选C.
【点睛】本题主要考查了平面向量基本定理的应用,向量的主要应用体现在以下几方面:(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法;(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去"向量外衣",转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.
8.已知函数,则函数的图象( )
A. 关于点对称
B. 关于轴对称
C. 可由函数的图象向右平移个单位得到
D. 可由函数的图象向左平移个单位得到