解:(1)∵Δy=√(1+Δx+4)-√(1+4)=√(5+Δx)-√5=Δx/(√(5+Δx)+√5),
∴Δy/Δx=1/(√(5+Δx)+√5),
∴y'|x=1=lim┬(Δx"→" 0) Δy/Δx=(lim)┬(Δx"→" 0) 1/(√(5+Δx)+√5)=1/(2√5)=√5/10.
(2)∵Δy=1/("(" 2+Δx")" ^2 )+2-1/4-2=1/("(" Δx")" ^2+4Δx+4)-1/4=("-(" Δx")" ^2 "-" 4Δx)/(4"[(" Δx")" ^2+4Δx+4"]" ),
∴Δy/Δx=("-" Δx"-" 4)/(4"[(" Δx")" ^2+4Δx+4"]" ),
∴y'|x=2=lim┬(Δx"→" 0) Δy/Δx=lim┬(Δx"→" 0) ("-" Δx"-" 4)/(4"[(" Δx")" ^2+4Δx+4"]" )=("-" 4)/16=-1/4.