做全等形,用"≌"表示.
概念:能够完全重合的两个三角形叫做全等三角形.
【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?
【学生活动】动手操作,实践感知,得出结论:两个三角形全等.
【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.
【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
【交流讨论】通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合,只有当把相同的角旋转到一起时才能完全重合.
2.这时它们的三个顶点、三条边和三个内角分别重合了.
3.完全重合说明三条边对应相等,三个内角对应相等,对应顶点在相对应的位置.
【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,记作△ABC≌△DBC.
【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?
【学生活动】经过观察得到下面性质:
1.全等三角形对应边相等;
2.对应线段(边,中线,高,角平分线)相等;
3.全等三角形对应角相等;
4. 全等三角形周长、面积相等.
二、随堂练习,巩固深化
课本P4练习.
【探研时空】