过C′作C′D′⊥O′A′于D′,
则C′D′=h.
由题意知C′D′(C′B′+O′A′)=S.
即h(C′B′+O′A′)=S.
又原直角梯形面积为S′=·2h(C′B′+O′A′)
=h(C′B′+O′A′)==2S.
所以梯形OABC的面积为2S.
8.解 (1)作出长方体的直观图ABCD-A1B1C1D1,如图a所示;
(2)再以上底面A1B1C1D1的对角线交点为原点建立x′,y′,z′轴,如图b所示,在z′上取点V′,使得V′O′的长度为棱锥的高,连接V′A1,V′B1,V′C1,V′D1,得到四棱锥的直观图,如图b;
(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.
9.A 10.2 11.
12.解 画法:步骤:
(1)如图a所示,在梯形ABCD中,
以边AB所在的直线为x轴,点A为原点,
建立平面直角坐标系xOy.如图b所示,
画出对应的x′轴,y′轴,使∠x′O′y′=45°.
(2)在图a中,过D点作DE⊥x轴,垂足为E.在图b中,
在x′轴上取A′B′=AB=4 cm,
A′E′=AE=≈2.598 cm;
过点E′作E′D′∥y′轴,使E′D′=ED=×=0.75 cm,再过点D′