2018-2019学年北师大版选修2-1 3.2.1.1 抛物线及其标准方程 作业
2018-2019学年北师大版选修2-1 3.2.1.1 抛物线及其标准方程 作业第2页

答案:A

6.垂直于x轴的直线交抛物线y2=4x于A,B两点,若AB的长为4√3,则焦点到AB的距离为     .

解析:由抛物线的方程知抛物线的焦点坐标为(1,0),且AB垂直于x轴,设A(x,y),y>0,则B(x,-y),所以2y=4√3,解得y=2√3,代入y2=4x得x=3,所以焦点到AB的距离为2.

答案:2

7.抛物线y2=x上一点P到焦点的距离是2,则点P的坐标为    .

解析:y2=x的准线为x=-1/4,焦点为(1/4 "," 0).

  设点P(x1,y1),由抛物线的定义,知x1+1/4=2,

  所以x1=2-1/4=7/4.由y_1^2=7/4,得y1=±√7/2.

  故点P的坐标为(7/4 "," ±√7/2).

答案:(7/4 "," ±√7/2)

8.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为     .

解析:如图所示,由已知可求得点B(p/4 "," 1)在抛物线y2=2px上,∴1=2p·p/4,∴p=√2.

  ∴B(√2/4 "," 1),准线为x=-√2/2.

  ∴点B到准线的距离为 (3√2)/4.

答案:(3√2)/4

9.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为     .

解析:因为抛物线方程为y2=4x,则准线方程为x=-1.