∵0<x<,∴0<tanx<1.
∴f(x)min=4.
答案:D
9.函数f(x)=cosx-cos2x(x∈R)的最大值等于_______________.
解析:原式=f(x)=cosx-(2cos2x-1)
=cosx-cos2x+
=-(cos2x-cosx+)+
=-(cosx-)2+.
∵x∈R,∴-1≤cosx≤1.
∴cosx=时,f(x)max=.
答案:
10.已知sinα=cos2α,α∈(,π),则tanα=_____________.
解析:由sinα=cos2α,得
sinα=1-2sin2α,即2sin2α+sinα-1=0.
sinα=或sinα=-1(舍去),
∴α=.
∴tanα=tan=.
答案:
11.求函数y=sin2x+2sinxcosx+3cos2x-2的取值范围、最小正周期以及为增函数的区间.
解析:y=(sin2x+cos2x)+sin2x+2cos2x-2
=1+sin2x+cos2x-1
=sin(2x+).
(1)-≤y≤.
(2)T==π.
(3)2kπ-≤2x+≤2kπ+(k∈Z).