故∫_("-" 6)^6▒ f(x)dx=2∫_0^6▒ f(x)dx=16.
答案:D
6.若∫_0^a▒ xdx=1(a>0),则实数a的值为 .
解析:由定积分的意义知∫_0^a▒ xdx=1/2·a·a=1(a>0),故a=√2.
答案:√2
7.已知∫_0^t▒ xdx=2,则由y=x,x=-t,x=0及y=0围成的曲边梯形的面积为 . 学 ]
解析:∵y=x在[-t,t]上是奇函数,∴所求面积与由y=x,x=0,x=t及y=0围成的曲边梯形的面积相等,即为2.
答案:2
8.∫_0^1▒ √(1"-(" x"-" 1")" ^2 )dx= .
解析:函数y=√(1"-(" x"-" 1")" ^2 )的图像是圆心为(1,0),半径为1的圆的上半部分.由定积分的意义知,所求定积分为圆面积的1/4,即是π/4.
答案:π/4
9.求证:1/2<∫_0^1▒ √xdx<1.
证明如图,
∫_0^1▒ √xdx表示图中阴影部分的面积,连接OB,则△OAB的面积是1/2,正方形OABC的面积是1.显然,△OAB的面积<阴影部分的面积<正方形OABC的面积,即1/2<∫_0^1▒ √xdx<1.
10.已知∫_0^3▒ 1dx=3,∫_0^3▒ xdx=9/2,∫_0^3▒ x2dx=9,∫_0^3▒ x3dx=81/4,求:
(1)∫_0^3▒ (4x3-3x2+6x-8)dx;
(2)∫_0^3▒ (-8x3+21x2-12x+15)dx.
解(1)∫_0^3▒ (4x3-3x2+6x-8)dx
=∫_0^3▒ 4x3dx+∫_0^3▒ (-3x2)dx+∫_0^3▒ 6xdx+∫_0^3▒ (-8)dx
=4∫_0^3▒ x3dx+(-3)∫_0^3▒ x2dx+6∫_0^3▒ xdx+(-8)∫_0^3▒ 1dx
=4×81/4-3×9+6×9/2-8×3=57.
(2)∫_0^3▒ (-8x3+21x2-12x+15)dx