当0 当t=10 时,y在区间(0,25)上的最大值为900·······························(9分) 当25≤x≤30 时,y=(-t+100)(-t+40),配方整理得y=(t-70)^2-900,··(10分) 所以当t=25 时,y在区间上的最大值为1125. ····························(11分) 综上可知日销售金额最大值为1125元,此时t=25. ·························(12分) 22.(12分)解:(1)因为f(x)是定义域为"R" 的奇函数, 所以f(0)=0,所以1+(1-t)=0,所以"t=2" , ····························(2分) (2)由(1)知:f(x)=a^x-1/a^x (a>0,a≠1), 因为f(1)>0,所以a-1/a>0,又a>0且a≠1,所以a>1, 所以f(x)=a^x-1/a^x 在R上单调递增,·······································(3分) 又f(x)是定义域为R的奇函数, 所以f(x^2+bx)+f(4-x)>0⇒f(x^2+bx)>f(x-4)⇔x^2+bx>x-4······(4分) 即x^2+bx-x+4>0在x∈R上恒成立,所以Δ=〖(b-1)〗^2-16<0,即-3 所以实数b的取值范围为(-3,5). ···········································(6分) (3)因为f(1)=3/2,所以a-1/a=3/2,解得 a=2 或 a=-1/2(舍去),··············(7分) 所以h(x)=2^2x+1/2^2x -2m(2^x-1/2^x )=〖(2^x-1/2^x )〗^2-2m(2^x-1/2^x )+2, 令u=f(x)=2^x-1/2^x ,则g(u)=u^2-2mu+2, 因为f(x)=2^x-1/2^x 在R上为增函数,且x≥1,所以u≥f(1)=3/2,················(8分) 因为h(x)=2^2x+1/2^2x -2mf(x)在[1,+∞)上的最小值为-2, 所以g(u)=u^2-2mu+2在[3/2,+∞)上的最小值为-2, 因为g(u)=u^2-2mu+2=〖(u-m)〗^2+2-m^2的对称轴为u=m· 则当m≥(3 )/2 时, g〖(u)〗_min=g(m)=2-m^2=-2,解得m=2 或m=-2(舍去)(10分)