=a+b+c.]
8.已知正方体ABCDA1B1C1D1的棱长为a,则\s\up8(→(→)·\s\up8(→(→)=________.
a2 [\s\up8(→(→)·\s\up8(→(→)=\s\up8(→(→)·\s\up8(→(→)=|\s\up8(→(→)|·|\s\up8(→(→)|·
cos〈\s\up8(→(→),\s\up8(→(→)〉=a×a×cos 60°=a2.
]
三、解答题
9.如图,已知空间四边形ABCD,E、H分别是边AB、AD的中点,F、G分别是边CB、CD上的点,且\s\up8(→(→)=\s\up8(→(→),\s\up8(→(→)=\s\up8(→(→).求证:四边形EFGH是梯形.
[证明] ∵E、H分别是AB、AD的中点,
∴\s\up8(→(→)=\s\up8(→(→),\s\up8(→(→)=\s\up8(→(→),
\s\up8(→(→)=\s\up8(→(→)-\s\up8(→(→)=\s\up8(→(→)-\s\up8(→(→)=(\s\up8(→(→)-\s\up8(→(→))
=\s\up8(→(→)=(\s\up8(→(→)-\s\up8(→(→))=2(\a\vs4\al\co1(\f(3,2)
=(\s\up8(→(→)-\s\up8(→(→))=\s\up8(→(→),
∴\s\up8(→(→)∥\s\up8(→(→)且|\s\up8(→(→)|=|\s\up8(→(→)|≠|\s\up8(→(→)|.
又F不在EH上,∴四边形EFGH是梯形.
10.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E