∵AB与CD成60°角,
∴〈\s\up6(→(→),\s\up6(→(→)〉=60°或120°.
∵\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→),
∴|\s\up6(→(→)|2=|\s\up6(→(→)|2+|\s\up6(→(→)|2+|\s\up6(→(→)|2+2\s\up6(→(→)·\s\up6(→(→)+2\s\up6(→(→)·\s\up6(→(→)+2\s\up6(→(→)·\s\up6(→(→)=|\s\up6(→(→)|2+|\s\up6(→(→)|2+|\s\up6(→(→)|2+2\s\up6(→(→)·\s\up6(→(→)=3+2·1·1·cos〈\s\up6(→(→),\s\up6(→(→)〉
=\s\up6(→(4,〈\o(BA,\s\up6(→)
∴|\s\up6(→(→)|=2或,即B、D间的距离为2或.
4.如图,PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
证明:(1)设\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c,则\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)
=\s\up6(→(→)+\s\up6(→(→)-\s\up6(→(→)
=\s\up6(→(→)+\s\up6(→(→)-(\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→))=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)-\s\up6(→(→)-\s\up6(→(→)=(\s\up6(→(→)+\s\up6(→(→))=(b+c),
∴\s\up6(→(→)·\s\up6(→(→)=(b+c)·(-a)
=-(a·b+a·c),
∵四边形ABCD是矩形,PA⊥平面ABCD,
∴a⊥b,a⊥c,∴a·b=a·c=0,
∴\s\up6(→(→)·\s\up6(→(→)=0,
∴\s\up6(→(→)⊥\s\up6(→(→),故MN⊥CD.
(2)由(1)知,MN⊥CD,\s\up6(→(→)=(b+c),
∵\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=b-c,
∴\s\up6(→(→)·\s\up6(→(→)=(b+c)·(b-c)