A.24种 B.14种 C.10种 D.9种
答案 B
解析 不选连衣裙有4×3=12种方法,选连衣裙有2种.共有12+2=14种.
5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在平面直角坐标系中,第一、第二象限内不同点的个数为( )
A.18 B.16 C.14 D.10
答案 C
解析 此问题可分为两类:①以集合M中的元素作为横坐标,集合N中的元素作为纵坐标,在集合M中任取一个元素的方法有3种,要使所取的点在第一、第二象限内,则在集合N中只能取5,6两个元素中的一个,方法有2种,根据分步乘法计数原理,有3×2=6(个);②以集合N中的元素作为横坐标,集合M中的元素作为纵坐标,在集合N中任取一个元素的方法有4种,要使所取的点在第一、第二象限内,则在集合M中只能取1,3两个元素中的一个,方法有2种,根据分步乘法计数原理,有4×2=8(个).综合①②,利用分类加法计数原理知,共有6+8=14(个).故选C.
二、填空题
6.如图,小圆点表示网络的结点,结点之间的连线表示它们由网线相连,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可沿不同的路径同时传递.则单位时间内传递的最大信息量是________.
答案 19
解析 若以网线为标准,则完成"从结点A向结点B传递信息"这件事也可分为四类,从而分解为若干个简单的问题后再各个击破.
分四类:第一类,网线为12→5→3,单位时间传递的最大信息量是3;第