+4,由已知,得(3k+4)×=±6,解得k1=-或k2=-.
故直线l的方程为2x+3y-6=0或8x+3y+12=0.
(2)设直线l在y轴上的截距为b,则直线l的方程是y=x+b,它在x轴上的截距是-6b,
由已知,得|-6b·b|=6,
所以b=±1.
所以直线l的方程为x-6y+6=0或x-6y-6=0.
[综合题组练]
1.已知点P(x,y)在直线x+y-4=0上,则x2+y2的最小值是( )
A.8 B.2
C. D.16
解析:选A.因为点P(x,y)在直线x+y-4=0上,所以y=4-x,所以x2+y2=x2+(4-x)2=2(x-2)2+8,当x=2时,x2+y2取得最小值8.
2.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴,y轴上的截距之和的最小值为( )
A.1 B.2
C.4 D.8
解析:选C.因为直线ax+by=ab(a>0,b>0)过点(1,1),所以a+b=ab,即+=1,
所以a+b=(a+b)
=2++≥2+2=4,
当且仅当a=b=2时上式等号成立.
所以直线在x轴,y轴上的截距之和的最小值为4.
3.已知线段MN两端点的坐标分别为M(-1,2)和N(2,3),若直线kx-y+k-2=0与线段MN有交点,则实数k的取值范围是________.
解析:直线kx-y+k-2=0过定点P(-1,-2).MP平行于y轴,kNP==,所以k≥.
答案:
4.直线l的倾斜角是直线4x+3y-1=0的倾斜角的一半,若l不过坐标原点,则l在