曲线离心率的取值范围为
16.以下四个关于圆锥曲线的命题:
(1)直角坐标系内,到点和到直线距离相等的点的轨迹是抛物线;
(2)设为两个定点,若,则动点的轨迹为双曲线;
(3)方程的两根可分别作椭圆和双曲线的离心率;
(4)若直线和没有交点,则过点的直线与椭圆的交点个数为.其中真命题的序号为 .(写出所有真命题的序号)
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17. (本小题满分10分)已知命题,命题,若命题为真命题,命题为假命题,求实数的取值范围.
18. (本小题满分12分)某地区有小学21所,中学14所,大学7所.现采用分层抽样的方法从这些学校中抽取6所学校,对学生进行视力检查.
(Ⅰ) 求应从小学、中学、大学中分别抽取的学校数目;
(Ⅱ) 若从抽取的6所学校中随即抽取2所学校作进一步数据分析:
①列出所有可能抽取的结果;②求抽取的2所学校没有大学的概率.
19.(本小题满分12分)已知椭圆的右焦点为,且椭圆上的点到点的最大距离为3,为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过右焦点倾斜角为的直线与椭圆交于、两点,求弦长
20. (本小题满分12分)某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,,...,分成8组,制成了如图1所示的频率分布直方图.