答案D
4.斜率为2的直线经过(3,5),(a,7),(-1,b)三点,则a,b的值分别是( )
A.4,0 B.-4,-3 C.4,-3 D.-4,3
解析由题意得{■((7"-" 5)/(a"-" 3)=2"," @(b"-" 5)/("-" 1"-" 3)=2"," )┤解得{■(a=4"," @b="-" 3"." )┤
答案C
5.已知点A(-3,8),B(2,4),若在y轴上的点P满足PA的斜率是PB斜率的两倍,则点P的坐标为( )
A.(5,0) B.(0"," 44/7) C.(0,5) D.(44/7 "," 0)
解析由题意设P(0,y),∵kPA=2kPB,∴(y"-" 8)/3=2×(y"-" 4)/("-" 2),解得y=5,即点P的坐标为(0,5).故选C.
答案C
6.已知直线l经过点A(5,10),B(m,12),且直线l的倾斜角是锐角,则m的取值范围是 .
解析由于直线的倾斜角是锐角,所以kl=kAB=(12"-" 10)/(m"-" 5)>0,即2/(m"-" 5)>0,因此m>5.
答案m>5
7.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则1/a+1/b的值等于 .
解析∵A,B,C三点共线,∴kAB=kAC,即(0"-" 2)/(a"-" 2)=(b"-" 2)/(0"-" 2),
∴4=(a-2)(b-2).
∴ab-2(a+b)=0.
∵ab≠0,∴1-2(1/a+1/b)=0.∴1/a+1/b=1/2.
答案1/2
8.已知A(3,4),在坐标轴上有一点B,使直线AB的斜率等于2,求点B的坐标.
解①如果点B在x轴上,那么可设B(x0,0),
则kAB=(0"-" 4)/(x_0 "-" 3)=2,所以x0=1,即B(1,0).
②如果点B在y轴上,那么可设B(0,y0),
则kAB=(y_0 "-" 4)/(0"-" 3)=2,所以y0=-2,即B(0,-2).
综上可知,点B的坐标为(1,0)或(0,-2).
9.导学号91134036已知直角坐标平面内A(-1,1),B(1,1),C(2,√3+1)三点.
(1)求直线AB,BC,AC的斜率和倾斜角;
(2)若点D为△ABC的边AB上一动点,求直线CD的斜率k的取值范围.