序排列是( ).
A.f(-2) B.f(π) C.f(-3.14) D.f(π) 答案:A 解析:∵f(x)是偶函数, ∴f(-2)=f(2),f(-3.14)=f(3.14). ∵0<2<3.14<π,f(x)在[0,+∞)上是增函数, ∴f(2) 即f(-2) 5.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)= . 答案:-1 解析:令H(x)=f(x)+x2, 则H(1)+H(-1)=f(-1)+1+f(1)+1=0, ∴f(-1)=-3. ∴g(-1)=f(-1)+2=-1. 6.已知函数f(x)=x2+(a+1)x+2(a≠-1).若f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.若函数g(x),f(x)在区间(-∞,1)上均为减函数,则实数a的取值范围是 .0(导学号51790166) 答案:a≤-3 解析:∵f(x)=x2+(a+1)x+2, 而f(x)=g(x)+h(x),g(x)为奇函数,h(x)为偶函数, ∴g(x)=(a+1)x,h(x)=x2+2. 若g(x),f(x)在区间(-∞,1)上均为减函数, 则有{■(a+1<0"," @"-" (a+1)/2≥1"," )┤解得a≤-3. 7.(2016湖南岳阳一中高一月考)已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1) A.(1/3 "," 2/3) B.[1/3 "," 2/3) C.(1/2 "," 2/3) D.[1/2 "," 2/3) 答案:A 解析:∵函数f(x)是偶函数,∴f(2x-1) 又f(x)在区间[0,+∞)上单调递增, ∴|2x-1|<1/3,解得1/3 8.已知函数f(x)=x+m/x,且f(1)=3.