[解析] f′(x)=3ax2-1.因为函数f(x)在R上是减函数,所以f′(x)=3ax2-1≤0恒成立,所以a≤0.故选A.
[答案] A
4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2.则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
[解析] 构造函数g(x)=f(x)-(2x+4),
则g(-1)=2-(-2+4)=0,又f′(x)>2.
∴g′(x)=f′(x)-2>0,∴g(x)是R上的增函数.
∴f(x)>2x+4⇔g(x)>0⇔g(x)>g(-1),
∴x>-1.
[答案] B
5.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )
A.(-∞,-)∪[,+∞)
B.[-,]
C.(-∞,-)∪(,+∞)
D.(-, )
[解析] f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立且不恒为0,Δ=4a2-12≤0⇒-≤a≤.
[答案] B
二、填空题
6.函数f(x)=x-2sin x在(0,π)上的单调递增区间为
__________.
[解析] 令f′(x)=1-2cos x>0,则cos x<,又x∈(0,π),解得