所以a2+b2+c2+2(a·b+b·c+c·a)=0,
所以a·b+b·c+c·a=-=-13.
答案:-13
7.已知|a|=3,|b|=4,m=a+b,n=a+λb,〈a,b〉=135°,m⊥n,则λ=________.
解析:由m⊥n,得(a+b)·(a+λb)=0,
所以a2+(1+λ)a·b+λb2=0,
所以18+(λ+1)·3×4cos 135°+16λ=0,
即4λ+6=0,所以λ=-.
答案:-
8.已知向量a与b的夹角为135°,且|a|=|b|=4,则a·(2a-b)=________.
解析:a·(2a-b)=2a2-a·b=2×42-4×4·cos 135°=32+8
答案:32+8
三、解答题
9.如图所示,在平行四边形ABCD中,AD=4,CD=3,∠BAD=120°,PA⊥平面ABCD,PA=6.求PC的长.
解:因为\s\up14(→(→)=\s\up14(→(→)+\s\up14(→(→)+\s\up14(→(→),
所以|\s\up14(→(→)|2=\s\up14(→(→)·\s\up14(→(→)=(\s\up14(→(→)+\s\up14(→(→)+\s\up14(→(→))2
=|\s\up14(→(→)|2+|\s\up14(→(→)|2+|\s\up14(→(→)|2+2\s\up14(→(→)·\s\up14(→(→)+2\s\up14(→(→)·\s\up14(→(→)+2\s\up14(→(→)·\s\up14(→(→)
=62+42+32+2·|\s\up14(→(→)|·|\s\up14(→(→)|·cos 120°=49.
所以|\s\up14(→(→)|=7,故PC的长为7.
10.如图所示,正三棱柱ABCA1B1C1中,底面边长为.
(1)设侧棱长为1,求证:AB1⊥BC1;
(2)设AB1与BC1的夹角为,求侧棱的长.