2018-2019学年北师大版必修三 第三章3 模拟方法——概率的应用 课时作业
2018-2019学年北师大版必修三  第三章3 模拟方法——概率的应用  课时作业第3页

  .

  答案:

  8.已知方程x2+3x++1=0,若p在[0,10]中随机取值,则方程有实数根的概率为________.

  解析:因为总的基本事件是[0,10]内的全部实数,所以基本事件总数为无限个,符合几何概型的条件,事件对应的测度为区间的长度,总的基本事件对应区间[0,10],长度为10,而事件"方程有实数根"应满足Δ≥0,即9-4×1×≥0,得p≤5,所以对应区间[0,5],长度为5,所以所求概率为=.

  答案:

  9.平面上画了一些彼此相距2a的平行线,把一枚半径r

  解:设事件A:"硬币不与任一条平行线相碰".为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图,这样线段OM长度(记作|OM|)的取值范围是[0,a],只有当r<|OM|≤a时,硬币不与平行线相碰,其长度范围是(r,a].

  所以P(A)==.

  

  10.小明每天早上在六点半至七点半之间离开家去学校上学,小强每天早上六点至七点之间到达小明家,约小明一同前往学校,问小强能见到小明的概率是多少?

解:如图所示,方形区域内任一点的横坐标x表示小强到达小明家的时间,纵坐标y表示小明离开家的时间,(x,y)可以看成平面中的点,试验的全部结果构成的区域为Ω={(x,y)|6≤x≤7,6.5≤y≤7.5},这是一个正方形区域,面积为SΩ=1×1=1.事件A表示"小强能见到小明",所构成的区域为A={(x,y)|6≤x≤7,6.5≤y≤7.5,y≥x},如