由∠APC为钝角得(PA) ⃗·(PC) ⃗<0,
即-λ(1-λ)-λ(1-λ)+(λ-1)2<0,
故(λ-1)(3λ-1)<0,解得1/3<λ<1.
【答案】D
10.设点C(2a+1,a+1,2)在由点P(2,0,0),A(1,-3,2),B(8,-1,4)确定的平面上,则a= .
【解析】由题意得(PA) ⃗ =(-1,-3,2),(PB) ⃗=(6,-1,4),(PC) ⃗=(2a-1,a+1,2).
根据共面向量定理,设(PC) ⃗ =x(PA) ⃗+y(PB) ⃗(x,y∈R),
则(2a-1,a+1,2)=x(-1,-3,2)+y(6,-1,4)=(-x+6y,-3x-y,2x+4y),
即{■(2a"-" 1="-" x+6y"," @a+1="-" 3x"-" y"," @2=2x+4y"," )┤解得{■(x="-" 7"," @y=4"," @a=16"." )┤
【答案】16
11.已知向量a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).
(1)求|2a+b|;
(2)在直线AB上是否存在一点E,使(OE) ⃗⊥b (O为原点)?
【解析】(1)2a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),
所以|2a+b|=√(0^2+"(-" 5")" ^2+5^2 )=5√2.
(2)(OE) ⃗=(OA) ⃗+(AE) ⃗=(OA) ⃗+t(AB) ⃗
=(-3,-1,4)+t(1,-1,-2)
=(-3+t,-1-t,4-2t)(t∈R),
若(OE) ⃗⊥b,则(OE) ⃗·b=0,
即-2(-3+t)+(-1-t)+(4-2t)=0,解得t=9/5,
故在直线AB上存在点E,使(OE) ⃗⊥b,此时点E的坐标为("-" 6/5 ",-" 14/5 "," 2/5).