球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是( )
A.a2>a3>a1 B.a2>a1>a3
C.a3>a1>a2 D.a3>a2>a1
解析:选D 空间站和月球绕地球运动的周期相同,由an=2r知,a2>a1;对地球同步卫星和月球,由万有引力定律和牛顿第二定律得G=man,可知a3>a2,故选项D正确。
6.(2015·天津高考)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形"旋转舱",如图所示。当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力。为达到上述目的,下列说法正确的是( )
A.旋转舱的半径越大,转动的角速度就应越大
B.旋转舱的半径越大,转动的角速度就应越小
C.宇航员质量越大,旋转舱的角速度就应越大
D.宇航员质量越大,旋转舱的角速度就应越小
解析:选B 旋转舱对宇航员的支持力提供宇航员做圆周运动的向心力,即mg=mω2r,解得ω=,即旋转舱的半径越大,角速度越小,而且与宇航员的质量无关,选项B正确。
7.(2014·新课标全国卷Ⅱ)假设地球可视为质量均匀分布的球体。已知地球表面重力加速度在两极的大小为g0;在赤道的大小为g;地球自转的周期为T,引力常量为G。地球的密度为( )
A.· B.·
C. D.·
解析:选B 由万有引力定律可知:G=mg0,在地球的赤道上:G-mg=m2R,地球的质量M=πR3ρ,联立三式可得:ρ=·,故B正确。