C.f(x)=-4x+2 D.f(x)=-3x+4
解析:设f(x)=ax+b(a≠0),
则∫_0^1▒ f(x)dx=∫_0^1▒ (ax+b)dx=(1/2 ax^2+bx) "|" _0^1
=1/2a+b=5,0①
∫_0^1▒ xf(x)dx=∫_0^1▒ (ax2+bx)dx
=(1/3 ax^3+1/2 bx^2 ) "|" _0^1=1/3a+1/2b=17/6.0② 学 ]
联立①②,解得a=4,b=3,
故f(x)=4x+3.
答案:A
6.∫_0^(π/2)▒ sin2x/2dx等于( )
A.π/4 B.π/2-1 C.2 D.(π"-" 2)/4
解析:∫_0^(π/2)▒ sin2x/2dx=∫_0^(π/2)▒ (1"-" cosx)/2dx=1/2(x-sin x)"|" _0^(π/2)=(π"-" 2)/4.
答案:D
7.∫_0^2▒ (3x2+k)dx=10,则k= .
解析:∫_0^2▒ (3x2+k)dx=(x3+kx)"|" _0^2=10,则k=1.
答案:1
8.∫_2^4▒ 2xln 2dx= . Z
解析:∫_2^4▒ 2xln 2dx=2x"|" _2^4=24-22=12.
答案:12
9.若f(x)在R上可导,f(x)=x2+2f'(2)x+3,则∫_0^3▒ f(x)dx= . Z
解析:∵f'(x)=2x+2f'(2),∴f'(2)=4+2f'(2).
∴f'(2)=-4.∴f(x)=x2-8x+3.
∴∫_0^3▒ f(x)dx=∫_0^3▒ (x2-8x+3)dx
=(1/3 x^3 "-" 4x^2+3x) "|" _0^3=-18.
答案:-18
10.求下列定积分:
(1)∫_("-" a)^a▒ √(x^2 )dx(a>0); 学 ]
(2)∫_1^2▒ (t+2)dx.