19.(12分)已知函数, 。
(1)若曲线在点(1, )处的切线与直线垂直,求a的值;
(2)当时,试问曲线与直线是否有公共点?如果有,求出所有公共点;若没有,请说明理由。
20.(12分)2017年10月18日至10月24日,中国共产党第十九次全国代表大会(简称党的"十九大")在北京召开一段时间后,某单位就"十九大"精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1组,第2组,第3组,第4组,第5组,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对"十九大"精神作深入学习.
(1)求这100人的平均得分(同一组数据用该区间的中点值作代表);
(2)求第3,4,5组分别选取的作深入学习的人数;
(3)若甲、乙、丙都被选取对"十九大"精神作深入学习,之后要从这6人随机选取2人再全面考查他们对"十九大"精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.
21.(12分)已知动点P与平面上两定点,连线的斜率的积为定值.
(1)试求动点P的轨迹方程C;
(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=时,求直线l的方程.
22.(12分)已知函数.
(1)求的单调区间;
(2)若 在x∈(0,1]内恒成立,求t的取值范围.