3.用数学归纳法证明: (n∈N*)时第一步需要证明( )
A. B.
C. D.
【答案】C
【解析】运用数学归纳法证明命题的第一步是验证,故即依据题设中的"",应验证时不等式是成立的,所以当时,不等式的两边分别是,应选答案C。
4.用数学归纳法证明"<n+1 (n∈N*)".第二步证n=k+1时(n=1已验证,n=k已假设成立),这样证明:=<=(k+1)+1,所以当n=k+1时,命题正确.此种证法( )
A.是正确的
B.归纳假设写法不正确
C.从k到k+1推理不严密
D.从k到k+1推理过程未使用归纳假设
【答案】D
【解析】
试题分析:必须利用归纳假设才是数学归纳法.
解:应该这样证明:假设当n=k≥2时,成立,
则当n=k+1时,左边===(k+1)+1,∴n=k+1时,不等式也成立.
而原证法只是应用了放缩法和不等式的性质,没有应用归纳假设,故不符合数学归纳法的要求.
故选D.
点评:正确理解数学归纳法证明命题的要求是解题的关键.
5.设f(n)=+++...+(n∈N*),那么f(n+1)﹣f(n)等于( )
A. B. C.+ D.﹣
【答案】D