kOA=y_1/x_1 ,kOC=y_2/("-" p/2)=-(2y_2)/p=-(2 ("-" p^2)/y_1 )/p
=2p/y_1 =((y_1^2)/x_1 )/y_1 =y_1/x_1 =kOA.
∴O,A,C三点共线,即直线AC经过原点O.
方法二:∵抛物线的焦点为F(p/2 "," 0),
∴经过点F的直线AB的方程可设为x=my+p/2,代入抛物线方程,得y2-2pmy-p2=0.
设A(x1,y1),B(x2,y2),则y1,y2是该方程的两根,
∴y1y2=-p2.
∵BC∥x轴,且点C在准线x=-p/2上,
∴点C的坐标为("-" p/2 "," y_2 ).
∴直线OC的斜率为k=y_2/("-" p/2)=2p/y_1 =y_1/x_1 ,
即k也是直线OA的斜率,
∴直线AC经过原点O.
方法三:如图,过点A作AD⊥l,D为垂足,
则AD∥EF∥BC,
设AC与EF相交于点N,
则("|" EN"|" )/("|" AD"|" )=("|" CN"|" )/("|" AC"|" )=("|" BF"|" )/("|" AB"|" ),("|" NF"|" )/("|" BC"|" )=("|" AF"|" )/("|" AB"|" ).
由抛物线的定义可知|AF|=|AD|,|BF|=|BC|,
∴|EN|=("|" AD"|·|" BF"|" )/("|" AB"|" )=("|" AF"|·|" BC"|" )/("|" AB"|" )=|NF|.
即点N是EF的中点,与抛物线的顶点O重合,所以直线AC经过原点O.
11.(拔高题)已知过抛物线y2=2px(p>0)的焦点的直线交抛物线于A,B两点,且|AB|=5/2p,求AB所在的直线方程.
解:方法一:焦点为F(p/2 "," 0),设A(x1,y1),B(x2,y2).
若AB⊥x轴,则|AB|=2p<5/2p,
∴直线AB的斜率存在,设为k,则直线AB的方程为y=k(x"-" p/2)(k≠0).由{■(y=k(x"-" p/2)"," @y^2=2px"," )┤
消去x,整理,得ky2-2py-kp2=0.
由根与系数的关系,得y1+y2=2p/k,y1y2=-p2.
∴|AB|=√("(" x_1 "-" x_2 ")" ^2+"(" y_1 "-" y_2 ")" ^2 )
=√((1+1/k^2 )"·(" y_1 "-" y_2 ")" ^2 )
=√(1+1/k^2 )·√("(" y_1+y_2 ")" ^2 "-" 4y_1 y_2 )
=2p(1+1/k^2 )=5/2p.
解得k=±2.
∴AB所在的直线方程为y=2(x"-" p/2)或y=-2(x"-" p/2).