题组4 由递推公式求数列的通项公式
9.在数列{an}中,a1=2,an+1-an-3=0,则{an}的通项公式为( )
A.an=3n+2 B.an=3n-2
C.an=3n-1 D.an=3n+1
10.设{an}是首项为1的正项数列且(n+1)a-na+an+1·an=0(n∈N*),求an.
[能力提升综合练]
1.在数列{an}中,a1=,an=(-1)n·2an-1(n≥2),则a5等于( )
A.- B. C.- D.
2.已知数列{an}满足a0=1,an=a0+a1+...+an-1(n≥1),则当n≥1时,an等于( )
A.2n B. C.2n-1 D.2n-1
3.已知数列{an}对任意的p,q∈N*满足ap+q=ap+aq,且a2=-6,则a10=( )
A.-165 B.-33 C.-30 D.-21
4.在数列{an}中,若a1=,an=(n≥2,n∈N*),则a2 016等于( )
A.1 B.-1 C. D.2
5.已知数列{an},an=an+m(a<0,n∈N*),满足a1=2,a2=4,则a3=________.
6.数列{an}中,a1=7,a9=8,且(n-1)an=a1+a2+...+an-1(n≥3),则a2等于________.
7.设f(x)=log2x-logx4(0 (1)求数列{an}的通项公式; (2)试判断数列{an}的增减性.