2018-2019学年北师大版选修1-1 第一章4.1-4.2 逻辑联结词“且”  逻辑联结词“或” 作业2
2018-2019学年北师大版选修1-1 第一章4.1-4.2 逻辑联结词“且”  逻辑联结词“或” 作业2第2页

  由于"p或q"为真,所以p为真或q为真,或p、q都为真,故m的取值范围是(-∞,2).

  答案:(-∞,2)

  8.对于命题p和命题q,给出下列说法,其中正确说法的序号是________(填序号).

  ①"p且q为真"是"p或q为真"的充分条件;②"p且q为假"是"p或q为真"的充分条件;③若"p或q"为真,"p且q"为假,则q为假.

  解析:利用"且"命题中全真为真,一假为假,"或"命题中一真为真,全假为假.

  可得:"p且q"为真⇒p为真,q为真⇒"p或q"为真,可知①正确.

  答案:①

  9.(1)用逻辑联结词"且"将命题p和q联结成一个新命题,并判断其真假,其中p:是无理数,q:大于2.

  (2)将命题"y=sin 2x既是周期函数,又是奇函数"改写为含有逻辑联结词"且"的命题,并判断其真假.

  解:(1)p且q:是无理数且大于2,是假命题.

  (2)y=sin 2x是周期函数且是奇函数,是真命题.

  10.设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0.

  (1)若a=1,且"p且q"为真,求实数x的取值范围;

  (2)若p是q成立的必要不充分条件,求实数a的取值范围.

  解:(1)由x2-4ax+3a2<0,

  得(x-3a)·(x-a)<0,

  又a>0,所以a

  当a=1时,1

  实数x的取值范围是1

  由x2-5x+6≤0得2≤x≤3,

  所以q为真命题时实数x的取值范围是2≤x≤3.

  若"p且q"为真,则2≤x<3,

  所以实数x的取值范围是[2,3).

  (2)设A={x|a

  B={x|2≤x≤3},

  由题意可知q是p的充分不必要条件,则BA,

  所以⇒1

  [B.能力提升]

  1.已知命题p:不等式||>的解集为{x|0

  A.p真q假 B."p且q"为真

  C."p或q"为假 D.p假q真

  解析:选A.对于p:||>,可得<0,即x∈(0,1),故p为真命题;

  对于q:a=b⇒a2=b2,但a2=b2⇒/ a=b,故q为假命题,易得"p或q"为真命题,"p且q"为假命题.

2.命题p:"任意x∈[1,2],2x2-x-m>0",命题q:"存在x∈[1,2],log2x+