=
==.
答案:
4.已知在空间四边形OABC中(如图所示),OA⊥BC,OB⊥AC,则OC和AB所成的角为 .
解析:由已知得
\s\up6(→(→)⊥\s\up6(→(→),\s\up6(→(→)⊥\s\up6(→(→),
所以\s\up6(→(→)·\s\up6(→(→)=0,\s\up6(→(→)·\s\up6(→(→)=0,
所以\s\up6(→(→)·(\s\up6(→(→)-\s\up6(→(→))=0,\s\up6(→(→)·(\s\up6(→(→)-\s\up6(→(→))=0,
所以\s\up6(→(→)·\s\up6(→(→)=\s\up6(→(→)·\s\up6(→(→),\s\up6(→(→)·\s\up6(→(→)=\s\up6(→(→)·\s\up6(→(→),
所以\s\up6(→(→)·\s\up6(→(→)-\s\up6(→(→)·\s\up6(→(→)=0,(\s\up6(→(→)-\s\up6(→(→))·\s\up6(→(→)=0,\s\up6(→(→)·\s\up6(→(→)=0,所以\s\up6(→(→)⊥\s\up6(→(→),即OC和AB成90°角.
答案:90°
5.已知斜三棱柱ABC-A′B′C′,设\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c.在面对角线AC′上和棱BC上分别取点M和N,使\s\up6(→(→)=k\s\up6(→(→),\s\up6(→(→)=k\s\up6(→(→)(0≤k≤1).
求证:(1)\s\up6(→(→)与向量a和c共面;
(2)MN∥平面A′AB.
证明:(1)显然\s\up6(→(→)=k\s\up6(→(→)=kb+kc,
且\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)=a+k\s\up6(→(→)=a+k(-a+b)=(1-k)a+kb,\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=(1-k)a+kb-kb-kc=(1-k)a-kc.因此,\s\up6(→(→)与向量a和c共面.
(2)由(1)知\s\up6(→(→)与向量a,c共面,
a,c在平面A′AB内,而MN不在平面A′AB内,
所以MN∥平面A′AB.
6.(选做题)如图,PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
证明:(1)设\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c,则\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)
=\s\up6(→(→)+\s\up6(→(→)-\s\up6(→(→)
=\s\up6(→(→)+\s\up6(→(→)-(\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→))=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)-\s\up6(→(→)-\s\up6(→(→)=(\s\up6(→(→)+\s\up6(→(→))=(b+c),
所以\s\up6(→(→)·\s\up6(→(→)=(b+c)·(-a)
=-(a·b+a·c),
因为四边形ABCD是矩形,PA⊥平面ABCD,
所以a⊥b,a⊥c,所以a·b=a·c=0,