2019-2020学年人教B版选修2-1 3.2.1 直线的方向向量与直线的向量方程作业
2019-2020学年人教B版选修2-1 3.2.1 直线的方向向量与直线的向量方程作业第3页



  因为(MN) ⃗·(A"'" C) ⃗=0,

  所以MN⊥A'C.又(MN) ⃗·(BB) ⃗'=0,所以MN⊥BB'.

★10.在棱长为1的正方体ABCD - A1B1C1D1中,E,F分别为棱AB和BC的中点,试在棱B1B上找一点M,使得D1M⊥平面EFB1.

解:以D为坐标原点,(DA) ⃗,(DC) ⃗,(DD_1 ) ⃗的方向分别为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系Dxyz.

  有A(1,0,0),B1(1,1,1),C(0,1,0),D1(0,0,1),E(1"," 1/2 "," 0),F(1/2 "," 1"," 0),设点M(1,1,m),

  则(EF) ⃗=("-" 1/2 "," 1/2 "," 0),(B_1 E) ⃗=(0",-" 1/2 ",-" 1),(D_1 M) ⃗=(1,1,m-1).

  ∵D1M⊥平面EFB1,

  ∴(D_1 M) ⃗⊥(EF) ⃗,且(B_1 E) ⃗⊥(D_1 M) ⃗,

  ∴(D_1 M) ⃗·(EF) ⃗=0,(D_1 M) ⃗·(B_1 E) ⃗=0,

  ∴{■("-" 1/2+1/2+"(" m"-" 1")·" 0=0"," @1×0"-" 1/2+1"-" m=0"," )┤

  ∴m=1/2.

  故取B1B的中点M,能满足D1M⊥平面EFB1.