2018学年科教版高一物理第一章《运动的描述》相遇和追及问题(知识梳理)
2018学年科教版高一物理第一章《运动的描述》相遇和追及问题(知识梳理)第3页

解决问题的突破口.

要点五、追及、相遇问题的处理方法

方法一:临界条件法(物理法):当追者与被追者到达同一位置,两者速度相同,则恰能追上或恰追不上(也是二者避免碰撞的临界条件)

方法二:判断法(数学方法):若追者甲和被追者乙最初相距d0令两者在t时相遇,则有,得到关于时间t的一元二次方程:当时,两者相撞或相遇两次;当时,两者恰好相遇或相撞;时,两者不会相撞或相遇.

方法三:图象法.利用速度时间图像可以直观形象的描述两物体的运动情况,通过分析图像,可以较方便的解决这类问题。

【典型例题】

类型一、机动车的行驶安全问题

例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。已知某高速公路的最高限速为v=120km/h。假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要0.50s(即反应时间),刹车时汽车所受阻力是车重的0.40倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离?

【思路点拨】理解各个时间段汽车的运动情况是关键。

【答案】156m

【解析】

匀减速过程的加速度大小为。

匀速阶段的位移,

减速阶段的位移,

所以两车至少相距。

【点评】刹车问题实际上是匀变速直线运动的有关规律在减速情况下的具体应用,要解决此类问题,首先要搞清楚在反应时间里汽车仍然做匀速直线;其次也要清楚汽车做减速运动,加速度为负值;最后要注意单位统一。

举一反三

【变式】酒后驾车严重威胁交通安全.其主要原因是饮酒会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成制动距离(从发现情况到汽车停止的距离)变长,假定汽车以108 km/h的速度匀速行驶,刹车时汽车的加速度大小为8 m/s2,正常人的反应时间为0.5 s,饮酒人的反应时间为1.5 s,试问:

 (1)驾驶员饮酒后的反制距离比正常时多几米?

 (2)饮酒的驾驶员从发现情况到汽车停止需多少时间?

【答案】 (1)30 m (2)5.25 s

【解析】 (1)汽车匀速行驶v=108 km/h=30 m/s

正常情况下刹车与饮酒后刹车,从刹车到车停止这段时间的运动是一样的,设饮酒后的刹车距离比正常