设直线l被圆C所截得弦长为L,由弦长、圆心距和圆的半径之间的关系,得
L=2√("(" 2√a ")" ^2 "-(" √2 "|" 2"-" a"|" ")" ^2 )=2√("-" 2a^2+12a"-" 8)=2√("-" 2"(" a"-" 3")" ^2+10).
∵0 (2)∵直线l与圆C相切,则有("|" m"-" 2a"|" )/√2=2√a, 即|m-2a|=2√2a. ∵点C在直线l的上方, ∴a>-a+m,即2a>m, ∴2a-m=2√2a, ∴m=(√2a-1)2-1. ∵0 ∴m∈[-1,8-4√2].
(2)∵直线l与圆C相切,则有("|" m"-" 2a"|" )/√2=2√a,
即|m-2a|=2√2a.
∵点C在直线l的上方,
∴a>-a+m,即2a>m,
∴2a-m=2√2a,
∴m=(√2a-1)2-1.
∵0 ∴m∈[-1,8-4√2].
∴m∈[-1,8-4√2].