19.(本小题满分12分)
有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表:
摄氏温度 -5 4 7 10 15 23 30 36 热饮杯数 162 128 115 135 89 71 63 37 (1)从散点图可以发现,各点散布在从左上角到右下角的区域里.因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少.统计中常用相关系数r来衡量两个变量之间线性关系的强弱.统计学认为,对于变量x、y,如果r∈[-1,-0.75],那么负相关很强;如果r∈[0.75,1],那么正相关很强;如果r∈(-0.75,-0.30]∪[0.30,0.75),那么相关性一般;如果r∈[-0.25,0.25],那么相关性较弱.请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(ⅰ)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ⅱ)记[x]为不超过x的最大整数,如[1.5]=1,[-4.9]=-5.对于(ⅰ)中求出的线性回归方程y=\s\up6(^(^)x+\s\up6(^(^),将y=[\s\up6(^(^)]x+[\s\up6(^(^)]视为气温与当天热饮销售杯数的函数关系.已知气温x与当天热饮每杯的销售利润f(x)的关系是f(x)=2+3(x∈[-7,38))(单位:元),请问当气温x为多少时,当天的热饮销售利润总额最大?
【参考公式】\s\up6(^(^)=i=1 (xi-x-)(yi-y-),\o(∑,\s\up6i=1r=i=1 (xi-x-)(yi-y-,n,)\i\su(i=1 (xi-x-)2\o(∑,\s\up6(2=1340,i=1 (yi-y-)2∑,\s\up6(8100,362=1296,372=1369.