2018-2019学年北师大版选修1-1 变化率问题与导数的概念 课时作业
2018-2019学年北师大版选修1-1  变化率问题与导数的概念    课时作业第3页

  【答案】B

10.设函数f(x)=ax+b,若f(1)=f'(1)=2,则f(2)=    .

  【解析】由导数的定义可知f'(1)=lim┬(Δx"→" 0) (f"(" 1+Δx")-" f"(" 1")" )/Δx=(lim)┬(Δx"→" 0) ("[" a"(" 1+Δx")" +b"]-(" a+b")" )/Δx=lim┬(Δx"→" 0) aΔx/Δx=a.

  

    ∵f'(1)=2,∴a=2.又f(1)=2,∴a+b=2,∴b=0,

  ∴f(x)=2x,f(2)=4.

  【答案】4

11.已知函数f(x)=x+1/x(x>0).

(1)记函数f(x)从x=1/2到x=2的平均变化率为¯r,求¯r的值;

(2)是否存在x0∈[1/2 "," 2],使得f'(x0)=¯r?若存在,求出x0的值;若不存在,请说明理由.

  【解析】(1)由f(x)=x+1/x(x>0),

  得¯r=(f"(" 2")-" f(1/2))/(2"-" 1/2)=(2+1/2)"-" (1/2+2)/(3/2)=0.

  (2)假设存在x0∈[1/2 "," 2],使得f'(x0)=¯r.

  由Δy/Δx=(f"(" x_0+Δx")-" f"(" x_0 ")" )/Δx

  =["(" x_0+Δx")" +1/(x_0+Δx)]"-" (x_0+1/x_0 )/Δx

  =(Δx+1/(x_0+Δx) "-" 1/x_0 )/Δx=(Δx+("-" Δx)/(x_0 "(" x_0+Δx")" ))/Δx

  =1-1/(x_0 "(" x_0+Δx")" )=1-1/(x_0^2+x_0 "·" Δx),

  得f'(x0)=lim┬(Δx"→" 0) (1"-" 1/(x_0^2+x_0 "·" Δx))=1-1/(x_0^2+x_0 "·" 0)=1-1/(x_0^2 ).

  由f'(x0)=¯r=0,得1-1/(x_0^2 )=0,解得x0=±1,

  又x0∈[1/2 "," 2],于是x0=1,

  故存在x0=1,使得f'(x0)=¯r.