∴(a/b)^((a"-" b)/2)>1.
综上所述,(a/b)^((a"-" b)/2)>1.
又abba>0,∴(√ab)a+b>abba.∴((a+b)/2)^(a+b)>abba.
8.已知a,b,m,n均为正数,求证:am+n+bm+n≥ambn+anbm.
分析利用作差法证明即可.
证明am+n+bm+n-ambn-anbm
=am(an-bn)+bm(bn-an)
=(an-bn)(am-bm).
∵a,b,m,n均为正数,
∴当a≥b时,(an-bn)(am-bm)≥0,
∴am+n+bm+n≥ambn+anbm;
当a0,
∴am+n+bm+n>ambn+anbm.
综上可知am+n+bm+n≥ambn+anbm.
9.已知a>2,求证:loga(a-1)证明因为a>2,所以a-1>1,
所以loga(a-1)>0,log(a+1)a>0.
因为(log_a "(" a"-" 1")" )/(log_("(" a+1")" ) a)=loga(a-1)·loga(a+1)
<[(log_a "(" a"-" 1")" +log_a "(" a+1")" )/2]^2=[(log_a "(" a^2 "-" 1")" )/2]^2,且a>2,
所以0 所以loga(a-1)★10.已知a>b>0,求证:("(" a"-" b")" ^2)/8a<(a+b)/2-√ab<("(" a"-" b")" ^2)/8b.
证明要证("(" a"-" b")" ^2)/8a<(a+b)/2-√ab<("(" a"-" b")" ^2)/8b,