∴a≥cosx/2.∵cosx/2≤1/2,∴a≥1/2.
答案:[1/2 "," +"∞" )
9.已知函数f(x)=ax-a/x-2ln x,若函数f(x)在其定义域内为增函数,求a的取值范围.
解:f'(x)=a+a/x^2 -2/x.
∵f(x)在其定义域(0,+∞)内为增函数,
∴当x∈(0,+∞)时,f'(x)≥0恒成立.
∴a+a/x^2 -2/x≥0,∴a≥2x/(x^2+1).
∵x>0,∴2x/(x^2+1)=2/(x+1/x)≤2/2=1.∴a≥1.
10.已知函数y=f(x)=x3+bx2+cx+d的图象经过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.
解:(1)由y=f(x)的图象经过点P(0,2),知d=2,所以f(x)=x3+bx2+cx+2,f'(x)=3x2+2bx+c.
由在点M(-1,f(-1))处的切线方程为6x-y+7=0,知-6-f(-1)+7=0,即f(-1)=1,f'(-1)=6.
所以{■(3"-" 2b+c=6"," @"-" 1+b"-" c+2=1"," )┤
即{■(2b"-" c="-" 3"," @b"-" c=0"," )┤解得b=c=-3.
故所求的解析式是y=f(x)=x3-3x2-3x+2.
(2)f'(x)=3x2-6x-3.
令f'(x)>0,得x<1-√2 或x>1+√2;
令f'(x)<0,得1-√2 故f(x)=x3-3x2-3x+2的单调递增区间为(-∞,1-√2)和(1+√2,+∞),单调递减区间为(1-√2,1+√2). 能力提升 1.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围为( ) A.a≥3 B.a=3 C.a≤3 D.0 解析:y'=3x2-2ax≤0在(0,2)内恒成立,即3x2≤2ax,a≥(3x^2)/2x=3x/2,所以a≥3. 答案:A