2018-2019学年北师大版必修4 第三章2.1-2.2 两角差的余弦函数 两角和与差的正弦、余弦函数 作业
2018-2019学年北师大版必修4 第三章2.1-2.2 两角差的余弦函数 两角和与差的正弦、余弦函数 作业第5页

  =,则x=________.

  解析:因为=ad-bc,=

  sin xcos-cos xsin=sin=,所以x-=+2kπ或x-=+2kπ,k∈Z,所以x=+2kπ或x=(2k+1)π,k∈Z.

  答案:+2kπ或(2k+1)π,k∈Z

  3.将下列各式写成Asin (x+θ)的形式.

  (1)sin x-cos x;

  (2)sin (-x)+cos(-x).

  解:(1)sin x-cos x=2(sin x-cos x)

  =2(cossin x-sincos x)=2sin (x-).

  (2)原式=[sin (-x)+cos(-x)]

  =[sinsin (-x)+coscos(-x)]

  =cos(-x-)=cos(-x)

  =sin (x+).

  4.已知a=(cos α,sin α),b=(cos β,sin β)(0<α<β<π).若ka+b与a-kb长度相等(其中k为非零实数),求β-α的值.

  解:∵ka+b=(kcos α,ksin α)+(cos β,sin β)=(kcos α+cos β,ksin α+sin β),a-kb=(cos α-kcos β,sin α-ksin β),

  ∴|ka+b|2=(kcos α+cos β)2+(ksin α+sin β)2=k2cos2α+2kcos αcos β+cos2β+k2sin2α+2ksin αsin β+sin2β=k2+2kcos(α-β)+1.

|a-kb|2=(cos α-kcos β)2+(sin α-ksin β)2=cos2α-2kcos αcos β+k2cos2β+sin2α-2ksin αsin β+k2sin2β=k2-2kcos(α-β)+1.