解析:依题意
由②得y=≥1,
∵x+10>0,∴x(x+40)≥15(x+10).
∴x2+25x-150≥0.
∴(x+30)(x-5)≥0.
∵x+30>0,∴x-5≥0,即x≥5.
答:第一次至少买5件商品.
备选习题
11若x解析:(用作差法比较)(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).12令0A. B.a C.2ab D.a2+b2解析:由题意,0又由2ab≤≤a2+b2,得a<2ab<答案:D13给出函数f(x)=x2,对任意x1,x2∈R+,且x1≠x2,试比较[f(x1)+f(x2)]与f()的大小关系.解析:∵[f(x1)+f(x2)]-f()= (x12+x22)-()2=x12+x22-x12-x22-x1x2
解析:(用作差法比较)
(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).
∵x0,x-y<0.
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
12令0A. B.a C.2ab D.a2+b2解析:由题意,0又由2ab≤≤a2+b2,得a<2ab<答案:D13给出函数f(x)=x2,对任意x1,x2∈R+,且x1≠x2,试比较[f(x1)+f(x2)]与f()的大小关系.解析:∵[f(x1)+f(x2)]-f()= (x12+x22)-()2=x12+x22-x12-x22-x1x2
A. B.a C.2ab D.a2+b2
解析:由题意,0又由2ab≤≤a2+b2,得a<2ab<答案:D13给出函数f(x)=x2,对任意x1,x2∈R+,且x1≠x2,试比较[f(x1)+f(x2)]与f()的大小关系.解析:∵[f(x1)+f(x2)]-f()= (x12+x22)-()2=x12+x22-x12-x22-x1x2
又由2ab≤≤a2+b2,
得a<2ab<答案:D13给出函数f(x)=x2,对任意x1,x2∈R+,且x1≠x2,试比较[f(x1)+f(x2)]与f()的大小关系.解析:∵[f(x1)+f(x2)]-f()= (x12+x22)-()2=x12+x22-x12-x22-x1x2
答案:D
13给出函数f(x)=x2,对任意x1,x2∈R+,且x1≠x2,试比较[f(x1)+f(x2)]与f()的大小关系.
解析:∵[f(x1)+f(x2)]-f()
= (x12+x22)-()2
=x12+x22-x12-x22-x1x2