【导学号:19220046】
【解析】 原式=2+7i-5+13i+3-4i=(2-5+3)+(7+13-4)i=16i.
【答案】 16i
5.z为纯虚数且|z-1-i|=1,则z=________.
【解析】 设z=bi(b∈R且b≠0),|z-1-i|=|-1+(b-1)i|==1,解得b=1,
∴z=i.
【答案】 i
6.已知z1=2(1-i),且|z|=1,则|z-z1|的最大值为________.
【解析】 |z|=1,即|OZ|=1,∴满足|z|=1的点Z的集合是以(0,0)为圆心,以1为半径的圆,又复数z1=2(1-i)在坐标系内对应的点为(2,-2).故|z-z1|的最大值为点Z1(2,-2)到圆上的点的最大距离,即|z-z1|的最大值为2+1.
【答案】 2+1
三、解答题
7.已知z1=a+(a+1)i,z2=-3b+(b+2)i,(a,b∈R),且z1-z2=4,求复数z=a+bi.
【解】 z1-z2=-[-3b+(b+2)i]=+(a-b-1)i,
∴
解得
∴z=2+i.
8.如图323,已知复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形ABCD的三个顶点A,B,C,求这个正方形的第四个顶点对应的复数.