8.函数y=(1/3)^(3"-" 2x"-" x^2 )的单调递增区间是 .
解析:函数y=(1/3)^(3"-" 2x"-" x^2 )=3^(x^2+2x"-" 3),令t=x2+2x-3,则y=3t,求函数y=(1/3)^(3"-" 2x"-" x^2 )的单调递增区间,即求函数t=x2+2x-3的递增区间.由二次函数的性质可得函数t=x2+2x-3的递增区间为(-1,+∞).
答案:(-1,+∞)
9.若函数f(x)=ax在[0,1]上的最大值与最小值之和为3,则a的值是 .
解析:易知f(x)在区间端点处取得最大值和最小值,所以f(0)+f(1)=a0+a1=1+a=3,故a=2.
答案:2
10.(1)求函数f(x)=2·ax-2+1(a>0,且a≠1)的图像所经过的定点;
(2)画出函数y=(1/2)^("|" x"|" )的图像,并根据图像写出函数的值域及单调区间.
解:(1)令x-2=0,得x=2,这时f(2)=2·a0+1=2+1=3,故该函数图像经过的定点是(2,3).
(2)∵y=(1/2)^("|" x"|" )={■((1/2)^x "," x≥0"," @2^x "," x<0"," )┤
∴在平面直角坐标系内画出函数y=(1/2)^x(x≥0)及y=2x(x<0)的图像.这两段图像合起来就是所求函数的图像,如图所示.
由图像可知所求函数的值域是(0,1],递增区间是(-∞,0],递减区间是[0,+∞).
11.已知函数f(x)=9x-2×3x+4,x∈[-1,2],求f(x)的最大值与最小值.
解:令t=3x.因为x∈[-1,2],所以t∈[1/3 "," 9].
又因为y=t2-2t+4=(t-1)2+3,
所以当t=1时,此时x=0,f(x)取最小值3;
当t=9时,此时x=2,f(x)取最大值67.
B组 能力提升
1.若f(x)=(e^x "-" e^("-" x))/2,g(x)=(e^x+e^("-" x))/2,则f(2x)等于( )
A.2f(x) B.2g(x)
C.2[f(x)+g(x)] D.2f(x)·g(x)
解析:f(2x)=(e^2x "-" e^("-" 2x))/2=("(" e^x+e^("-" x) ")(" e^x "-" e^("-" x) ")" )/2
=2·("(" e^x+e^("-" x) ")(" e^x "-" e^("-" x) ")" )/4=2f(x)·g(x),故选D.
答案:D
2.函数f(x)={■(2^("-" x) "-" 1"," x≤0"," @x^(1/2) "," x>0"," )┤若f(x0)<1,则x0的取值范围是( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-2)∪(0,+∞) D.(-∞,-1)∪(1,+∞)
解析:当x0≤0时,2^("-" x_0 )-1<1,得2^("-" x_0 )<2,即x0>-1,所以-1 当x0>0时,x_0^(1/2)<1,得x0<1,所以0 综上可知,-1 答案:A 3.导学号85104062设函数f(x)定义在实数集上,它的图像关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( ) A.f(1/3) B.f(2/3) C.f(2/3)