2019-2020学年北师大版选修2-2课时分层作业8 导数的概念 导数的几何意义 作业(1)
2019-2020学年北师大版选修2-2课时分层作业8   导数的概念 导数的几何意义 作业(1)第2页

答案:D

5.已知函数y=f(x)的图像在点M(1,f(1))处的切线方程为y=1/2x+2,则f(1)+f'(1)=     .

解析:∵f(1)=1/2×1+2=5/2,f'(1)=1/2,

  ∴f(1)+f'(1)=5/2+1/2=3.

答案:3

6.已知f(x)在x=6处可导,且f(6)=8,f'(6)=3,则lim┬(x"→" 6) ("[" f"(" x")" "]" ^2 "-[" f"(" 6")" "]" ^2)/(x"-" 6)=     .

解析:∵f'(6)=3,∴(lim)┬(x"→" 6) (f"(" x")-" f"(" 6")" )/(x"-" 6)=3.

  ∴lim┬(x"→" 6) ("[" f"(" x")" "]" ^2 "-[" f"(" 6")" "]" ^2)/(x"-" 6)

  =lim┬(x"→" 6) ("[" f"(" x")-" f"(" 6")][" f"(" x")" +f"(" 6")]" )/(x"-" 6)

  =[f(6)+f(6)]·f'(6)=(8+8)×3=48.

答案:48

7.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则b/a的值是多少?

解由导数定义知f'(1)=lim┬(Δx"→" 0) (a"(" 1+Δx")" ^2+b"-(" a×1^2+b")" )/Δx=(lim)┬(Δx"→" 0)(2a+aΔx)=2a,∴2a=2,即a=1.

  又∵3=a×12+b,∴b=2.∴b/a=2.

8.已知曲线y=2√x+1,则此曲线上哪一点处的切线与直线y=-2x+3垂直?写出该点处的切线方程.

解设曲线y=f(x)=2√x+1上的点P(x0,y0)处的切线与直线y=-2x+3垂直,

  则f'(x0)=lim┬(Δx"→" 0) Δy/Δx

  =(lim)┬(Δx"→" 0) (2√(x_0+Δx)+1"-" 2√(x_0 ) "-" 1)/Δx

  =lim┬(Δx"→" 0) (2"(" x_0+Δx"-" x_0 ")" )/(Δx"(" √(x_0+Δx)+√(x_0 ) ")" )=2/(2√(x_0 ))=1/√(x_0 ),

  则1/√(x_0 )=1/2,∴x0=4,y0=2√4+1=5.

  ∴切线方程为y-5=1/2(x-4),即x-2y+6=0.

  ∴曲线在点(4,5)处的切线与直线y=-2x+3垂直,切线方程为x-2y+6=0.

9.导学号88184019已知直线l:y=4x+a和曲线C:y=x3-2x2+3相切,求a的值以及切点坐标.

解设直线l与曲线C:y=f(x)=x3-2x2+3相切于点P(x0,y0),

  ∵f'(x0)=lim┬(Δx"→" 0) (f"(" x_0+Δx")-" f"(" x_0 ")" )/Δx

  =(lim)┬(Δx"→" 0) ("(" x_0+Δx")" ^3 "-" 2"(" x_0+Δx")" ^2+3"-(" x_0^3 "-" 2x_0^2+3")" )/Δx

  =3x_0^2-4x0,

由导数的几何意义知3x_0^2-4x0=4,