【详解】∵<=0,=1,>=1,
∴,
故选:D.
【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其"桥梁"作用,来比较大小.
10.如果关于的方程的两根是,则的值是( )
A. B. C. 35 D.
【答案】D
【解析】
【分析】
由题意知,lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7•lg5=0的两根,依据根与系数的关系得lgα+lgβ=﹣(lg7+lg5),再根据对数的运算性质可求得α•β的值.
【详解】∵方程lg2x+(lg7+lg5)lgx+lg7•lg5=0的两根为α、β,
∴lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7•lg5=0的两根,
∴lgα+lgβ=﹣(lg7+lg5),
∴lgαβ=﹣lg35,
∴α•β的值是.
故选:D.
【点睛】本题是一元二次方程与对数运算交汇的题目,考查学生整体处理问题的能力,本题容易出现的错误是,误认为方程lg2x+(lg7+lg5)lgx+lg7•lg5=0的两根为α、β,则α•β=lg7•lg5,导致错选A.
11.已知函数y=f(x)在定义域(-1,1)上是减函数,且f(2a-1)<f(1-a),则实数a的取值范围是( )
A. B. C. (0,2) D. (0,+∞)
【答案】B
【解析】