答案4-√2/2
★8已知函数f(x)=ax2+c(a≠0),若∫_0^1▒ f(x)dx=f(x0),0≤x0≤1,则x0的值为 .
解析∫_0^1▒ f(x)dx=∫_0^1▒ (ax2+c)dx
=(1/3 ax^3+cx) "|" _0^1=a/3+c=ax_0^2+c,
∵0≤x0≤1,∴x0=√3/3.
答案√3/3
9计算下列定积分:
(1)∫_0^2▒ (2x+3)dx;
(2)∫_("-" 1)^3▒ (4x-x2)dx;
(3)∫_1^2▒ (x-1)5dx.
解(1)因为(x2+3x)'=2x+3,
所以∫_0^2▒ (2x+3)dx=(x2+3x)"|" _0^2
=22+3×2-(02+3×0)=10.
(2)因为(2x^2 "-" x^3/3)'=4x-x2,
所以∫_("-" 1)^3▒ (4x-x2)dx=(2x^2 "-" x^3/3) "|" _("-" 1)^3
=(2×3^2 "-" 3^3/3)-[2×"(-" 1")" ^2 "-" ("(-" 1")" ^3)/3]=20/3.
(3)因为[1/6 "(" x"-" 1")" ^6 ]'=(x-1)5,
所以∫_1^2▒ (x-1)5dx=1/6(x-1)6"|" _1^2
=1/6(2-1)6-1/6(1-1)6=1/6.
能力提升
1若S1=∫_1^2▒ x2dx,S2=∫_1^2▒ 1/xdx,S3=∫_1^2▒ exdx,则S1,S2,S3的大小关系为( )
A.S1 C.S2 解析S1=∫_1^2▒ x2dx=1/3x3"|" _1^2=1/3×23-1/3×13=7/3,S2=∫_1^2▒ 1/xdx=ln x"|" _1^2=ln 2-ln 1=ln 2