别为x轴,y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(,1),依题意得||MA|-|MB||=|PA|-|PB|=-=2<|AB|=4.
∴曲线C是以A,B为焦点的双曲线.
则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为-=1.
法二:同法一建立平面直角坐标系,则依题意可得||MA|-|MB||=|PA|-|PB|<|AB|=4.
∴曲线C是以A,B为焦点的双曲线.
设双曲线的方程为-=1(a>0,b>0),则有解得a2=b2=2.
∴曲线C的方程为-=1.
10.已知方程kx2+y2=4,其中k为实数,对于不同范围的k值分别指出方程所表示的曲线类型.
【导学号:97792085】
[解] (1)当k=0时,y=±2,表示两条与x轴平行的直线;
(2)当k=1时,方程为x2+y2=4,表示圆心在原点,半径为2的圆;
(3)当k<0时,方程为-=1,表示焦点在y轴上的双曲线;
(4)当0<k<1时,方程为+=1,表示焦点在x轴上的椭圆;
(5)当k>1时,方程为+=1,表示焦点在y轴上的椭圆.
[能力提升练]
1.设θ∈,则关于x,y的方程+=1所表示的曲线是( )