2018-2019学年北师大版选修2-2 演绎推理 课时作业
2018-2019学年北师大版选修2-2        演绎推理   课时作业第3页

③(f"(" x_1 ")-" f"(" x_2 ")" )/(x_1 "-" x_2 )>0;

④f((x_1+x_2)/2)<(f"(" x_1 ")" +f"(" x_2 ")" )/2.

当f(x)=lg x时,上述结论中正确的是   .(填序号)

  【解析】当f(x)=lg x时,

  f(x1·x2)=lg(x1·x2)=lg x1+lg x2=f(x1)+f(x2).

  又f(x)=lg x是增函数,故f(x1)-f(x2)与x1-x2同号,即(f"(" x_1 ")-" f"(" x_2 ")" )/(x_1 "-" x_2 )>0,故②③正确.

  【答案】②③

11.已知y=f(x)在区间(0,+∞)内单调递增,且满足f(2)=1,f(xy)=f(x)+f(y).试用"三段论"的形式解决下列问题.

(1)求证:f(x2)=2f(x).

(2)求f(1)的值.

(3)若f(x)+f(x+3)≤2,求x的取值范围.

  【解析】(1)∵f(xy)=f(x)+f(y)(大前提),

  ∴f(x2)=f(x·x)=f(x)+f(x)=2f(x)(结论).

  (2)∵f(1)=f(12)=2f(1)(小前提),

  ∴f(1)=0(结论).

  (3)∵f(x)+f(x+3)=f(x·(x+3))≤2=2f(2)=f(4)(小前提),且函数f(x)在区间(0,+∞)内单调递增(大前提),

  ∴{■(x>0"," @x+3>0"," @x"·(" x+3")" ≤4"," )┤解得0