面.
答案:1或4
7. 解析:观察图形可知①③错误,②④正确.
答案:②④
8. 解析:①中线段可与平面α相交;②中的四边形可以是空间四边形;③中平行的对边能确定平面,所以是平行四边形;④中三边在同一平面内,可推知第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;⑤中点A与α内的任意直线都能确定一个平面.
答案:③④
9. 证明:∵AB∩α=P,CD∩α=P,∴AB∩CD=P.
∴AB,CD可确定一个平面,设为β.
∵A∈AB,C∈CD,B∈AB,D∈CD,
∴A∈β,C∈β,B∈β,D∈β.
∴ACβ,BDβ,平面α,β相交.
∵AB∩α=P,AC∩α=Q,BD∩α=R,
∴P,Q,R三点是平面α与平面β的公共点.
∴P,Q,R都在α与β的交线上,故P,Q,R三点共线.
10. 证明:①无三线共点情况,如图所示,
设a∩d=M,b∩d=N,c∩d=P,a∩b=Q,a∩c=R,b∩c=S.
∵a∩d=M,∴a,d可确定一个平面α.
∵N∈d,Q∈a,∴N∈α,Q∈α.
∴NQα,即bα.同理cα.∴a,b,c,d共面.
②有三线共点的情况,如图所示,