答案:(1)(-∞, -√2) (2)(-∞,√2)
三、解答题
6.(10分)(教材P28T5改编)判断下列命题的真假:
(1)∀x∈N,x2>0.
(2)圆x2+y2=r2(r>0)上存在一点到圆心的距离是r.
(3)存在一对实数x0,y0满足2x0+4y0=3.
(4)方程2x+4y=3的所有解都不是整数解.
【解析】(1)假命题:当x=0时,x2=0.
(2)真命题:由圆的定义知圆上的每一个点到圆心的距离都是r.
(3)真命题:{■(x=3/2,@y=0)┤满足方程2x+4y=3.
(4)真命题:当x,y∈Z时,左边是偶数,右边3是奇数,不可能相等.
一、选择题(每小题5分,共10分)
1.(2018·佛山高二检测)下列命题中,真命题是 ( )
A.∃m0∈R,使函数f(x)=x2+m0x(x∈R)是偶函数
B.∃m0∈R,使函数f(x)=x2+m0x(x∈R)是奇函数
C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数
D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数
【解析】选A.只有当m=0时,f(x)=x2(x∈R)是偶函数,故A正确,C,D不正确;又二次函数不可能为奇函数,故B不正确.
2.(2018·衡阳高二检测)设命题p:∃x0∈R,使x_0^2+2ax0+2-a=0;命题q:不等式ax2-√2ax+2>0对任意x∈R恒成立.若p为真,且p或q为真,则a的取值范围
是 ( )
A.(-2,1) B.(-2,0) C.,x2-a≥0",命题q:"∃x0∈R,x_0^2+2ax0+2-a=0".
(1)若命题p为真命题,求实数a的取值范围.
(2)若命题"p∧q"为假命题,求实数a的取值范围.