即只需证((a"-" b)/(2√a))^2<(√a-√b)2<((a"-" b)/(2√b))^2.
∵a>b>0,
∴a-b>0,√a-√b>0,
∴只需证(a"-" b)/(2√a)<√a-√b<(a"-" b)/(2√b),即证(√a+√b)/(2√a)<1<(√a+√b)/(2√b).
要证(√a+√b)/(2√a)<1,只需证√a+√b<2√a,即证√b<√a,此式成立.
要证1<(√a+√b)/(2√b),只需证2√b<√a+√b,即证√b<√a,此式成立.
∴(√a+√b)/(2√a)<1<(√a+√b)/(2√b)成立,
∴("(" a"-" b")" ^2)/8a<(a+b)/2-√ab<("(" a"-" b")" ^2)/8b成立.