==.
解法二:y=1,
y′=(1)′=()′
==.
(4)解法一:y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+(x+1)(x+2)
=3x2+12x+11.
解法二:y=x3+6x2+11x+6,
∴y′=3x2+12x+11.
30分钟训练 (巩固类训练,可用于课后)
1.若y=sint,则y′|t=6π等于( )
A.1 B.-1 C.0 D.cost
答案:A
解析:y′|t=6π=cos6π=1.
2.曲线y=2x3-6x上切线平行于x轴的点的坐标是...( )
A.(-1,4) B.(1,-4)
C.(-1,-4)或(1,4) D.(-1,4)或(1,-4)
答案:D
解析:y′=(2x3-6x)′=6x2-6,
由y′=0,得x=1或x=-1.
代入y=2x3-6x,得y=-4或y=4.
即所求点的坐标为(1,-4)或(-1,4).
3.曲线f(x)=x3+x-2在P0点处的切线平行于直线y=4x-1,则P0点的坐标为( )
A.(1,0)或(-1,-4) B.(0,1)
C.(-1,0) D.(1,4)
答案:A
4.设y=-2exsinx,则y′等于( )
A.-2excosx B.-2exsinx C.2exsinx D.-2ex(sinx+cosx)
答案:D
解析:y′=-2(exsinx+excosx)=-2ex(sinx+cosx).
5.设f(x)=x(x-1)(x-2)...(x-100),则f′(0)等于...( )
A.100 B.0
C.100×99×98×...×3×2×1 D.1
答案:C
解析:∵f(x)=x(x-1)(x-2)...(x-100),
∴f′(x)=(x-1)(x-2)...(x-100)+x·[(x-1)·(x-2)...(x-100)]′.