答案
1.A 2.A 3.B 4.D
5.52
6.2 -
7.(1)证明 由斜率公式得:
kAB==,
kCD==-,
则kAB·kCD=-1,∴AB⊥CD.
(2)解 ∵l1⊥l2,∴k1·k2=-1,
即×=-1,解得a=1或a=3.
8.解 由斜率公式得kOP==t,
kQR===t,kOR==-,
kPQ===-.
∴kOP=kQR,kOR=kPQ,从而OP∥QR,OR∥PQ.
∴四边形OPQR为平行四边形.
又kOP·kOR=-1,∴OP⊥OR,
故四边形OPQR为矩形.
9.B
10.平行或重合
11.(-19,-62)
12.解 由斜率公式可得
kAB==,
kBC==0,
kAC==5.
由kBC=0知直线BC∥x轴,
∴BC边上的高线与x轴垂直,其斜率不存在.
设AB、AC边上高线的斜率分别为k1、k2,由k1·kAB=-1,k2·kAC=-1,
即k1·=-1,k2·5=-1,